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1. Introduction 
During March and April 2018, linear and nonlinear parameter uncertainty analyses were undertaken 
for the NFSEG groundwater model constructed by St Johns River and Suwannee River Water 
Management Districts. Linear analysis comprised calculation of parameter identifiabilities and 
uncertainty reductions accrued through the calibration process. Nonlinear analysis culminated in the 
generation of 522 parameter fields, all of which can be considered as reasonable, and all of which 
provide a fit with the calibration dataset which is almost as good as that provided by the parameter 
field which is deemed to calibrate the model. The uncertainty of any prediction made by the NFSEG 
model can be assessed by making the prediction with all of these parameter fields.  
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2. Theory 

2.1 General 
Nonlinear model predictive uncertainty analysis is generally implemented using Monte Carlo 
methods. It requires implementation of a procedure through which the posterior parameter 
probability distribution is sampled in order to generate a suite of parameter fields. While all of these 
parameter fields must satisfy calibration constraints (i.e. they must fit the calibration dataset to a level 
that is commensurate with the amount of measurement noise which accompanies that dataset), the 
process of sampling the posterior parameter probability distribution is much more difficult than that 
of obtaining a single parameter field that is deemed to “calibrate” a model. The latter process seeks a 
unique solution to an ill-posed inverse problem by pursuing a parameter field of minimized error 
variance. Generally, this is a parameter field that suppresses any heterogeneity that is not supported 
by the calibration dataset. Model predictions that are made using this parameter field can then also 
be considered as of minimum error variance. As such, they lie somewhere near the centre of the 
posterior probability distribution of that prediction. 

In contrast to the process required for obtaining a minimum error variance parameter field, nonlinear 
parameter/predictive uncertainty analysis requires that the posterior parameter probability 
distribution be sampled in order to seek parameter fields which express heterogeneity rather than 
suppress it, while still promulgating a good fit with the calibration dataset. However any heterogeneity 
that is thereby expressed must be realistic from an expert knowledge point of view. 

Notionally, the posterior parameter probability distribution can be derived through application of 
Bayes equation. Let the vector k denote parameters employed by a model. Let the operator Z() 
represent the action of the model on its parameters. Let elements of the vector h represent members 
of the calibration dataset, and let the vector ε represent noise associated with measurements that 
comprise this dataset. Then 

 h = Z(k) + ε         (2.1) 

We use the symbol P() to represent probability. Let P(k) represent the prior probability (i.e. pre-
calibration probability) associated with a parameter vector k. Bayes equation is used to characterize 
the posterior (i.e. post-calibration) probability associated with that same parameter vector. This is 
denoted as P(k|h), i.e. the probability of k conditioned by the calibration dataset h. Bayes equation 
states that: 

 𝑃𝑃(𝐤𝐤|𝐡𝐡)  ∝ 𝑃𝑃(𝐡𝐡|𝐤𝐤) 𝑃𝑃(𝐤𝐤)        (2.2) 

The term P(h|k) is referred to as the likelihood function. It rises to the extent that a parameter field 
promulgates a good fit with the calibration dataset.  

Direct use of Bayes equation to characterize the posterior parameter probability distribution, or even 
just to sample it, is extremely difficult (if not impossible) where parameter numbers are high. Hence 
approximate methods must be sought. The PEST suite provides a number of means to do this. All of 
them start with a linear approximation to Bayes equation; they then modify parameter fields that are 
sampled from the thus-approximated posterior parameter probability distribution so that they fit the 
calibration dataset to an acceptable degree. It is important to note, however, that despite their quasi 
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linear origin, use of these parameter fields in making a model prediction involves no linearity 
assumption. 

2.2 Approximate Implementation of Bayes Equation 
Suppose that the following conditions are met: 

• The prior probability distribution of parameters is multi Gaussian; 
• The probability density function of measurement noise is multi Gaussian; 
• The action of the model on its parameters is linear, and hence can be expressed as a matrix. 

Then the posterior expected values of parameters (i.e. the mean values of parameters according to 
their posterior probability distribution) can be obtained through the model calibration process, 
provided that this process employs regularisation that is in accordance with the prior parameter 
probability distribution. The covariance matrix that characterizes the posterior parameter probability 
distribution (we will refer to this as Cʹ(k)) can be calculated using either of the following 
(mathematically equivalent) formulas: 

Cʹ(k) = C(k) –C(k)Zt[ZC(k)Zt + C(ε)]-1ZC(k)      (2.3a)  

Cʹ(k) = [ZtC-1(ε)Z + C-1(k)]-1       (2.3b) 

In these equations C(k) is the covariance matrix associated with the prior parameter probability 
distribution while C(ε) is the covariance matrix associated with measurement noise. 

Cʹ(k) of equations 2.3a and 2.3b can be calculated using the PREDUNC7 program supplied with the 
PEST suite. This employs the weighted Jacobian matrix calculated using the calibration parameter set 
in place of Z. Samples of the approximate posterior parameter probability distribution can then be 
generated using the RANDPAR1 utility; these samples are centred on the calibrated parameter field.  

Because of model nonlinearity, it is unlikely that random parameter fields which are obtained in this 
way will promulgate an acceptable fit between model outputs and the calibration dataset. Predictive 
uncertainties that are calculated using these parameter fields may therefore be too broad. Hence 
these fields must be adjusted to better respect calibration constraints. Two adjustment options are as 
follows. 

1. Adjust these parameter fields using PEST; the first iteration of the adjustment process can be 
implemented with very little numerical cost through use of the same Jacobian matrix that was 
employed by PREDUNC7 to calculate Cʹ(k). Thus it does not need to be re-calculated for each 
random parameter field. 

2. Subject these parameter fields to null space projection (see below) to remove those aspects 
of them that compromise goodness of fit. Then, if model-to-measurement fit is still not good 
enough, undertake PEST-based parameter adjustment as above. Null space projection can be 
implemented using the PNULPAR utility. The first iteration of parameter adjustment can 
employ a pre-calculated Jacobian matrix. 

If only one iteration of parameter adjustment is required, both of these options are numerically 
efficient. However a second iteration of parameter adjustment incurs a high numerical cost, for it 
requires calculation of a new Jacobian matrix. This requires that one model run be undertaken for 
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each adjustable parameter (8949 for the NFSEG model). The numerical burden can be somewhat 
reduced if only “super parameters” are adjusted. These are coefficients applied to the right singular 
vectors of the weighted Jacobian matrix; only enough of these need be adjusted to span the 
dimensionality of the calibration solution space – about 1500 for the NFSEG model. 

A second iteration of parameter adjustment is unacceptable for the NFSEG model as the numerical 
burden is too high to countenance. In general, the first of the above two options is preferred. However, 
the second must be chosen if it eliminates the need for a second iteration of parameter adjustment. 
The second of these options was indeed adopted for sampling the posterior parameter probability 
distribution of the NFSEG model. The null space projection methodology that it entails is now 
described. 

Let J represent the Jacobian matrix and let Q represent the weight matrix used in model calibration 
(normally diagonal). If subjected to singular value decomposition, the weighted Jacobian matrix Q½J 
can be decomposed as: 

 Q½J = USVt         (2.4) 

where U is an orthonormal matrix whose columns span the range space of Q½J, V is an orthonormal 
matrix whose columns span parameter space, and S is a diagonal matrix of singular values. Using the 
SUPCALC utility provided with the PEST suite, V can be partitioned as: 

 V = [V1 V2]         (2.5) 

where the columns of V1 span the calibration solution space and those of V2 span the calibration null 
space (i.e. the space wherein combinations of parameters have minimal effects on model outputs and 
hence are non-inferable through the calibration process). See Doherty (2015) for further details.  

The PNULPAR utility modifies a random parameter vector k in the following manner: 

1. First it subtracts the parameter vector k obtained through calibration of the model to 
obtain k - k; 

2. It then projects this difference onto the calibration null space through pre-
multiplication by V2V2

t. 
3. It adds k to this projected difference. 

If the model is run using a PNULPAR-calculated set of parameters, minimal parameter adjustment is 
normally required for fitting the calibration dataset to an arbitrary level of acceptability. A 
disadvantage of this method of achieving a good fit with the calibration dataset, however, is that the 
component of parameter uncertainty that is inherited from measurement noise can be diminished 
through this process. This is of little consequence if predictions of interest have a high degree of null 
space dependency. The uncertainties of other predictions may be somewhat under-valued, however. 
This is rectified to some extent through post-projection parameter adjustment (as was done for the 
NFSEG model), for it is the solution space component of random parameter fields that must adapt to 
the requirement for a suitably good level of fit with the calibration dataset; the uncertainty associated 
with this component is directly inherited from measurement noise associated with that data. Another 
strategy is to add random noise to members of the calibration dataset prior to adjustment of each 
parameter field. However, this is problematical in many modelling contexts (including the present one) 
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as the assumption of measurement-to-measurement statistical independence is not in accordance 
with the predominately structural origin of model-to-measurement misfit that is typically encountered 
when calibrating an environmental model. Nor is it possible to provide a suitable stochastic description 
for this inherently heteroscedastic phenomenon.  

2.3 Parameter Estimability 
Application of the linear theory presented above enables relatively easy calculation of two statistics 
which provide a measure of the information content of the calibration dataset with respect to 
parameters employed by the model. Each of these statistics has a value of between 0.0 and 1.0, with 
the former indicating zero information content, and the latter indicative of sufficient information 
content to afford unique estimation of its value. Both of these statistics are discussed by Doherty and 
Hunt (2009). 

The first statistic discussed herein is the relative parameter uncertainty variance reduction. The 
variances of posterior parameter uncertainty comprise the diagonal elements of the Cʹ(k) matrix that 
is calculated using equation 2.3a or 2.3b.  Prior parameter uncertainty variances are available as the 
corresponding elements of C(k). Let σi

2ʹ denote the posterior variance of the i’th parameter; let σi
2 

denote its prior variance. The relative uncertainty variance reduction of parameter i (which we denote 
as Ri) is calculated using the following formula.  

 𝑅𝑅𝑖𝑖 =  𝜎𝜎𝑖𝑖
2− 𝜎𝜎𝑖𝑖

2ʹ

𝜎𝜎𝑖𝑖
2           (2.6) 

The second statistic is the so-called “identifiability” of a parameter. It is defined as the square of the 
cosine between a vector pointing in the direction of the parameter and the projection of this vector 
onto the calibration solution space. This is the space defined by the vectors comprising the columns 
of the V1 matrix of equation 2.5. This measure of parameter estimability is a little more arbitrary than 
relative parameter uncertainty variance reduction because it is sensitive to the estimated 
dimensionality of the solution space. In calibration of an environmental model, the boundary between 
the solution and null spaces is not sharp. Theoretically, this boundary marks the point at which the 
potential for error associated with calibration-based estimation of the value of a parameter 
combination defined by the pertinent column of V1 is greater than the potential for error based on 
expert knowledge alone. This is the point at which “over-fitting” begins. Moore and Doherty (2005) 
show that attempts to estimate values associated with an increasing number of columns of V1 are 
accompanied by a growing amplification of measurement noise as singular values associated with 
these columns diminish in magnitude. The fact that prior uncertainties are themselves uncertain, and 
that “measurement noise” is dominated by structural noise of unknown statistical properties, makes 
separation of solution and null spaces based on this premise a somewhat vague undertaking. This 
vagueness is inherited by the values assigned to the identifiabilities of those parameters that are only 
mildly informed by the calibration dataset. 

 

 



Calculating Calibration-Constrained Parameter Fields 6 

3. Calculating Calibration-Constrained Parameter Fields 

3.1 Observations and Parameters 
Details of parameters employed by the NFSEG model, and of observations comprising the NFSEG 
model calibration dataset, are described in chapter 4 of the companion report. In undertaking 
calibration-constrained random parameter field generation for the NFSEG model, parameters 
remained unchanged from those employed in the calibration process, with the following exceptions. 

• Recharge multiplier parameters which were fixed at a value of 1.0 during the calibration 
process were decreed as adjustable.  

• EVT rate multiplier parameters which were fixed at a value of 1.0 during the calibration 
process were decreed as adjustable.  

Table 3.1 lists parameter groups employed in the random parameter field generation process. With 
the exception of 8 parameters belonging to the sc group (7 of which were fixed and one of which was 
tied to another parameter), all parameters within all of these groups were log-transformed for the 
purpose of assigning prior uncertainties, and for the purpose of generating samples from the posterior 
parameter probability distribution.  

Table 3.1 Parameter groups used in random parameter field generation. A total of 8957 parameters 
collectively comprise these groups, 8949 of which are adjustable. 

Parameter 
group name 

Parameterization 
device 

Number of 
adjustable 
parameters 

Description 

k1x pilot points 518 horizontal hydraulic conductivity – layer 1 
k3x pilot points 1767 horizontal hydraulic conductivity – layer 3 
k5xk3x pilot points 201 horizontal hydraulic conductivity multiplier outside MCU 

– layer 5 
k5x pilot points 364 horizontal hydraulic conductivity – layer 5 
k7x pilot points 55 horizontal hydraulic conductivity – layer 7 
k2z pilot points 556 vertical hydraulic conductivity – layer 2 
k2zk3z pilot points 333 vertical hydraulic conductivity multiplier outside ICU – 

layer 2 
k4zk3z pilot points 230 vertical hydraulic conductivity multiplier outside MCU – 

layer 4 
k4z pilot points 139 vertical hydraulic conductivity – layer 4 
k6z pilot points 68 vertical hydraulic conductivity – layer 6 
vanis1 entire layer 1 vertical anisotropy – layer 1 
vanis2 zoned according to 

ICU/non-ICU 
2 vertical anisotropy – layer 2 

vanis3 pilot points 154 vertical anisotropy – layer 3 
vanis4 zoned according to 

MCU/non-MCU 
2 vertical anisotropy – layer 4 

vanis5 zoned according to 
MCU/non-MCU 

2 vertical anisotropy – layer 5 

vanis6 entire layer 1 vertical anisotropy – layer 6 
vanis7 entire layer 1 vertical anisotropy – layer 7 
lcm zoned according to 

lakes 
258 multiplier applied to lakebed conductance 

rcm zoned according to 
river reaches 

1872 multiplier applied to river reach conductance 

sc zoned according to 
springs 

371 GHB conductance at springs 

rechmul zones (see fig 3.1) 904 multiplier applied to recharge rates 
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evtrmul zones (see fig 3.1) 904 multiplier applied to maximum EVT rates 
lkzmul zoned according to 

lakes 
246 vertical conductivity multiplier under lakes 

 

Table 3.2 lists observation groups comprising the calibration dataset. 

Table 3.2 Observation groups used in constraining random parameter fields. A total of 5713 non-zero-
weighted observations collectively comprise these groups. 

Observation group name Number of observations 
with non-zero weight 

Description 

h2001_lay1 228   Heads in layer 1: 2001 
h2001_lay2 96 Heads in layer 2: 2001 
h2001_lay3 977 Heads in layer 3: 2001 
h2001_lay4 13 Heads in layer 4: 2001 
h2001_lay5 39 Heads in layer 5: 2001 
h2001_lay7 2 Heads in layer 7: 2001 
h2009_lay1 581 Heads in layer 1: 2009 
h2009_lay2 111 Heads in layer 2: 2009 
h2009_lay3 993 Heads in layer 3: 2009 
h2009_lay4 10 Heads in layer 4: 2009 
h2009_lay5 41 Heads in layer 5: 2009 
h2009_lay7 2 Heads in layer 7: 2009 
hd2001_lay3 288 Lateral head gradients in layer 3: 2001 
hd2009_lay3 274 Lateral head gradients in layer 3: 2009 
td_lay1 0 Temporal head differences: layer 1 
td_lay2 0 Temporal head differences: layer 2 
td_lay3 0 Temporal head differences: layer 3 
td_lay4 0 Temporal head differences: layer 4 
td_lay5 0 Temporal head differences: layer 5 
td_lay7 0 Temporal head differences: layer 7 
wp_dry_2001 6 Minimizes occurrence of dry cells in wetland areas in 2001 
wp_wet_2001 6 Minimizes occurrence of flooded cells 
wp_dry_2009 6 Minimizes occurrence of dry cells in wetland areas in 2009 
wp_wet_2009 6 Minimizes occurrence of flooded cells 
vd_1to3_01 114 Vertical head differences: layer 1 to 3 in 2001 
vd_1to3_09 141 Vertical head differences: layer 1 to 3 in 2009 
vd_3to5_01 17 Vertical head differences: layer 3 to 5 in 2001 
vd_3to5_09 19 Vertical head differences: layer 3 to 5 in 2009 
qr01 76 Inflow to river segments between one or more gages: 2001 
qr09 44 Inflow to river segments between one or more gages: 2009 
qspring01 365 Inflow to springs: 2001 
qspring09 368 Inflow to springs: 2009 
qs_spring01 6 Inflow to spring groups: 2001 
qs_spring09 7 Inflow to spring groups: 2009 
qs01 11 Cumulative inflow to river upstream of a gage: 2001 
qs09 10 Cumulative inflow to river upstream of a gage: 2009 
qlake01 255 Flow to/from lakes: 2001 
qlake09 258 Flow to/from lakes: 2009 

 

3.2 Some Considerations Pertinent to the NFSEG Model 
The domain of the NFSEG model is large. The calibration dataset for the NFSEG model is large. It 
includes both heads and outflows (at rivers and springs). The model is judged by stakeholders on how 
well all of these elements of the calibration dataset are reproduced by the model. Considerable 
attention has been given to ensuring that the model is able to match observed heads and outflows 
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during the 2001 and 2009 calibration periods. In the future, the model will be used to support 
management which aims to maintain future heads and outflows at desired levels. 

This manner in which the NFSEG model was calibrated, and the manner in which it will be deployed 
has a number of repercussions, some of which are now briefly discussed. 

Because of the requirement that the parameter field which is deemed to calibrate the NFSEG model 
yields a good fit with the calibration dataset, particularly at locations that are pertinent to decision-
relevant predictions of future system behaviour, it is equally important that calibration-constrained 
random parameter fields that are used to explore predictive uncertainty do the same. If not, their 
characterization of the uncertainties of decision-critical model predictions will be deemed as being 
too conservative to be useful.  

Ideally the fit that is achieved between model outputs and field measurements of head and flow 
should be commensurate with the noise associated with measurement of these quantities. However, 
model-to-measurement misfit often exceeds measurement error because of its structural origins, 
born of model imperfections. For a regional model with a large cell size, calibrated under an 
assumption of steady state conditions, the magnitude of this structural term is occasionally significant. 
Furthermore, it differs from location to location in unknown ways. It cannot therefore be 
characterized as a sequence of random numbers whose magnitude at a given location is a matter of 
chance, both under calibration and predictive conditions.  

Naturally, a prediction of future system behaviour made by the NFSEG model will also be affected by 
structural error. Ideally, predictive uncertainty that arises from parametric uncertainty (as calculated 
using calibration constrained random parameter fields) should be supplemented by realisations of 
structural noise that are added to model predictions. Unfortunately, this is not possible for a number 
of reasons. These include: 

• The location-specific nature of structural error; 
• The fact that, for predictions which resemble members of the calibration dataset, some model 

structural defects will have been “calibrated out” (see Welter and Doherty, 2010; White et al, 
2014); 

• The likelihood that structural noise as it pertains to a prediction will be different from that 
which applies during calibration. 

The latter is important. While lack of exact adherence to the steady state assumption may incur 
structural noise under calibration conditions, it will not do so under predictive conditions. Similarly, 
future predictions of system behaviour (by definition) can be made under the assumption that all 
system stresses are known, or can be represented with a user-specified stochastic distribution whose 
properties are known; the same does not apply under historical conditions. Furthermore, in fulfilling 
its decision-support role, the NFSEG model will often be used to compute differences in heads or flows 
arising from differences in stresses rather than the actual values of these quantities. It can be assumed 
that considerable cancellation of structural noise accompanies the making of such differential 
predictions. (This is further discussed below.) 

Because of the presence of structural noise (a feature of all groundwater models), predictive 
uncertainties that are assessed through use of calibration-constrained stochastic parameter fields 
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whose calculation is described herein should be viewed as representing lower bounds on the 
uncertainties of predictions of management interest rather than their true uncertainties. Little can be 
done about this without recourse to a model from which structural deficiencies are absent.  

3.3 Prior Parameter Covariance Matrix 
As for previous linear analyses conducted on the NFSEG model, the C(k) matrix featured in equations 
2.3a and 2.3b is considered to be block-diagonal. Submatrices pertaining to many of these blocks are 
in fact diagonal, this denoting statistical independence of parameters represented by these blocks. 

For most parameter types, prior parameter variability assumed for random parameter field generation 
is somewhat smaller than that employed in previous investigations into parameter and predictive 
uncertainty using linear analysis. Prior uncertainties employed in previous analyses were used in the 
initial stages of the present nonlinear investigation (and in linear analysis discussed in the next section 
of this document). However, difficulties were encountered in attaining a good fit between model 
outputs and field measurements when deploying the methodologies discussed in chapter 2 of this 
appendix; a second, numerically expensive, iteration of parameter adjustment was found to be 
necessary to attain the level of model-to-measurements required for the NFSEG model. This problem 
was overcome by reducing the prior uncertainties of some parameters. 

Parameter groups comprising pilot point parameters were assigned a full covariance matrix based on 
spatially variable variograms. All variograms are exponential, and hence specified by the equation: 

ϒ(h)=C(0)[1 – exp (h/a)]        (3.1) 

In equation 3.1 h is distance and C(0) is the overall variance of the hydraulic property in question, this 
being equal to the sill of the variogram. The range of an exponential variogram is often characterized 
as 3a.  

For all pilot point parameters, the variogram “a” value was decreed to be pilot-point-specific. This 
reflects the fact that pilot points are not capable of representing the natural heterogeneity of a 
complex carbonate aquifer. Instead, their use implies a degree of upscaling, with the extent of 
upscaling decreasing with increasing spatial density of pilot points. Where spatial density of pilot point 
emplacement is high, they are capable of representing short range hydraulic property heterogeneity. 
Alternatively, where it is low, they can only represent long range hydraulic property heterogeneity. To 
reflect this, the variogram range associated with each pilot point was calculated in the following 
manner: 

1. The average separation between the pilot point to which an “a” value must be assigned and 
its 20 closest neighbours was calculated; 

2. The “a” value ascribed to the variogram associated with that pilot point was designated as 
twice this average separation. 

This strategy is similar to that applied in previous linear uncertainty analysis.  

For all pilot point parameter groups, the variogram sill (applied to the logarithm of hydraulic properties 
associated with pilot points) was denoted as uniformly 0.16, this implying a standard deviation of 
parameter variability of 0.4. Variograms assigned to all pilot points are isotropic, except for a number 
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of pilot points in the k3x and k3xk5x parameter groups to which a horizontal anisotropy of 2.0 with a 
bearing of 354 degrees was ascribed. 

Covariance matrix construction was undertaken using the MKPPSTAT and PPCOV_SVA utilities 
supplied with the PEST Groundwater Data Utility suite; see Doherty (2014). 

For all other parameter types except recharge and EVT multipliers, within-group statistical 
independence was assumed in filling the pertinent blocks of the C(k) matrix. A uniform standard 
deviation was applied to each member of the group. Details are provided in table 3.3. 

Table 3.3 Standard deviation assigned to each parameter within each respective parameter group. Note that 
these are actually applied to the log (to base 10) of each parameter. Note also that none of the parameters in 
this table pertain to pilot points. 

Parameter group name Standard deviation ascribed to each parameter within group 
vanis1 0.2 
vanis2 0.2 
vanis4 0.2 
vanis5 0.2 
vanis6 0.2 
vanis7 0.2 
lcm 0.5 
rcm 0.4 
sc 0.5 
lkzmul 0.4 

 

As has already been discussed, a recharge rate multiplier parameter and an EVT rate multiplier 
parameter were assigned to each of the 904 watershed-based polygons within the model domain that 
define zonation of these quantities. These parameters were assumed to be statistically independent 
of each other between polygons. However, a high degree of negative correlation (-0.94) is assumed 
to exist between the recharge rate multiplier and the maximum EVT rate multiplier within each 
polygon. This reflects the fact that they are both calculated by the same HSPF model which is 
calibrated to reproduce baseflow. Use of this correlation coefficient is equivalent to assuming that the 
recharge rate multiplier is equal to a random number plus a second random number whose standard 
deviation is about 25% of that of the first, while the EVT rate multiplier is equal to the same first 
random number minus a third random number which also has a standard deviation of 25% of that of 
this first random number. For the present study, the standard deviation of the first random number 
was chosen such that four standard deviations span a range in log space that is equivalent to 
multiplying and dividing the “calibrated” value of 1.0 for these recharge and EVT multiplier parameters 
by a factor of 1.25. A joint covariance matrix for recharge and EVT rate multipliers was constructed 
accordingly. 

3.4 Measurement Noise Covariance Matrix 
The C(ε) matrix which characterizes measurement noise (see equations 2.3a and 2.3b) is calculated 
slightly differently in nonlinear uncertainty analysis from the way that it is calculated in order to 
support linear uncertainty analysis. For calculation of Cʹ(k), C(ε) was assumed to be diagonal, with 
elements proportional to the inverse of the squared reciprocals of weights used during the calibration 
process. The proportionality constant applied to all weights was such that the measurement objective 
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function is approximately equal to the number of observations comprising the calibration dataset 
minus the dimensionality of the calibration solution space; see Doherty (2015) for details. 

Implied in the level of fit that calibration-constrained stochastic parameter fields are required to attain 
with the calibration dataset is a stochastic characterization of “noise” that is responsible for model-
to-measurement misfit. As has already been discussed, much of this “noise” is structural. As such, it is 
not amenable to statistical characterisation. If it were, indeed, stochastically-characterizable noise, 
the level of misfit used to constrain random parameter fields could be calculated using standard 
statistical theory; see, for example, Vecchia and Cooley (1987). For the NFSEG model, however, an 
objective function 5% greater than that attained by the calibrated parameter field was set as the 
constraint. The necessity for all random parameter fields used in conjunction with the NFSEG model 
to achieve a good fit with the model’s calibration dataset has already been discussed. 

3.5 Some Implementation Details 
Sampling the posterior probability distribution of NFSEG model parameter fields required that a suite 
of parameter fields be obtained for which corresponding objective functions are less than 1.05 times 
that attained by the calibrated model. It was required that the number of these parameter fields be 
sufficient to provide a reasonable characterization of posterior predictive uncertainties. This, in turn, 
required that the procedure be numerically efficient. Attainment of a workable level of numerical 
efficiency required avoidance of a second iteration of random parameter field adjustment.  Workflow 
settings used in this process (including variables used for characterization of prior parameter 
uncertainties) reflected this necessity. These were the outcome of some trial and error workflow 
implementations that are not discussed herein. 

3.6 Sampling a Linear Approximation to the Posterior 
The PEST PREDUNC7 utility was employed to calculate a linear approximation to the posterior 
covariance matrix Cʹ(k) using equation 2.3b.  

The RANDPAR1 utility was then employed to generate 1000 stochastic parameter field realizations 
based on the thus-calculated Cʹ(k) matrix. Each of these parameter fields was then subjected to null 
space projection using the PNULPAR utility; the dimensionality of the solution space was assumed to 
be 1500. 

Each of the PNULPAR-generated random parameter fields was then subjected to one iteration of 
parameter adjustment. As has already been discussed, this was a relatively cheap numerical 
undertaking as it employed the same Jacobian matrix for adjustment of all parameter fields, namely 
that which was calculated using the calibrated parameter field. For 522 of these parameter fields the 
final objective function was less than 1.05 times that associated with the calibration parameter field. 
These can be considered to comprise samples of the posterior parameter probability distribution. As 
such, they can be used for predictive uncertainty analysis. 
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4. Outcomes of Nonlinear Analysis 

4.1 Results 
As described previously, a set of 522 calibrated parameter fields were generated using the null-space 
Monte Carlo approach described in the previous section. An example of one of these fields is shown 
in figure 4.1. Collectively, these fields can be used to characterize the statistical properties of any 
model parameter. See, for example, the histograms pertaining to selected parameters depicted in 
figures 4.2 through 4.4, and the estimated cumulative parameter probability distribution provided in 
figure 4.5.  
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Figure 4.1. A single post-calibration random parameter field realization of horizontal hydraulic conductivity in 
layer 3. 
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Figure 4.2. Histogram for model parameter k3x496. This is a horizontal hydraulic conductivity pilot point 
parameter for layer 3. The histogram was developed from 522 calibration-constrained random parameter 
values. 

 

Figure 4.3. Histogram for model parameter k2z273. This is a vertical hydraulic conductivity pilot point 
parameter for layer 2. The histogram was developed from 522 calibration-constrained random parameter 
values. 
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Figure 4.4. Histogram for model parameter k2z749. This is a vertical hydraulic conductivity multiplier pilot 
point parameter for layer 2. The histogram was developed from 522 calibration-constrained random 
parameter values. 

 

 

Figure 4.5 Estimated cumulative probability distribution for model parameter k3496. This is a horizontal 
hydraulic conductivity pilot point parameter in layer 3. The probability distribution was developed from 522 
calibration-constrained random parameter values. Also shown are the mean and calibrated values for this 
parameter, along with values corresponding to the mean plus and minus one standard deviation. 
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Spatial variability of the statistical properties associated with a particular parameter type can be 
represented by mapping a given statistic to the location of its corresponding model parameter. 
Examples of these maps are provided in figures 4.6 and 4.7. Part a of these figures shows the 
geographical distribution of the standard deviation of log (to base 10) layer 3 hydraulic conductivities 
(figure 4.6), and layer 2 vertical hydraulic conductivities and vertical hydraulic conductivity multipliers 
(figure 4.7); all of these are pilot point parameters. Part b of these figures shows the spatial 
distribution of 10 raised to the power of log standard deviation. This is equivalent to the factor by 
which the mean parameter value at any point must be multiplied and divided to define a range which 
is roughly equal to its 67% confidence interval. 

 

Figure 4-6a. Standard deviation (in log space) of layer 3 horizontal hydraulic conductivity. 
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Figure 4-6b. Factor by which the horizontal hydraulic conductivity in layer 3 must be multiplied and divided to 
span a range that is roughly equivalent to its 67% confidence interval. 
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Figure 4-7a. Standard deviation (in log space) of layer 2 vertical hydraulic conductivity (confined areas) and 
layer 2 vertical hydraulic conductivity multipliers (unconfined areas). 
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Figure 4-7b. Factor by which vertical hydraulic conductivity (confined areas) and vertical hydraulic 
conductivity multipliers (unconfined areas) in layer 2 must be multiplied and divided to span a range that is 
roughly equivalent to its 67% confidence interval. 

Posterior probability distributions for selected predictions were estimated using the 522 calibration-
constrained parameter fields. The locations of these predictions are provided in table 4.1 and figure 
4.8. These predictions pertain to a hypothetical year 2035 pumping condition. 

Table 4.1 Names of locations at which predictive uncertainties are evaluated. 

Prediction location name  Description 

w00400 UFA observation well near Lake Lochloosa 

w00202 UFA observation well near Lake Brooklyn 

w00258 UFA observation well near Lake Geneva 

w00878 UFA observation well near Putnam County MFL lakes 

qs_2315500 Baseflow to the Suwannee River near White Springs 

qs_2317620 Baseflow to the Alapaha River near Jennings 

qs_2319000 Baseflow to the Withlacoochee River near Pinetta 
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Prediction location name  Description 
qr_2319394 Baseflow pickup in the reach upstream of the Withlacoochee River near Lee 

qr_2319500 Baseflow pickup in reach upstream of the Suwannee River near Ellaville 

qs_2319500 Baseflow to the Suwannee River at Ellaville 

qr_2320500a Baseflow to the reach upstream of the Suwannee River near Branford 

qs_2320500 Baseflow to the Suwannee River near Branford 

qr_2320700 Baseflow to the Santa Fe River near Graham 

qr_2321000 Baseflow to the New River near Lake Butler 

qs_2321500 Baseflow to the Santa Fe River near Worthington Springs 

qs_2322500 Baseflow to the Santa Fe River near Fort White 

qr_2322700 Baseflow to the Ichetucknee River at US Highway 27 near Hildreth 

qr_2323500 Baseflow pickup in reach upstream of the Suwannee River near Wilcox 

qs_2323500 Baseflow to the Suwannee River near Wilcox 

qr_2324000 Baseflow to the Steinhatchee River near Cross City 

qr_2326000 Baseflow to the Econfina River near Perry 

qr_2313700 Baseflow to the Waccasassa River near Gulf Hammock 

qr_2326550 Baseflow pickup in the reach upstream of the Aucilla River near Nutall Rise 

qspring_s121610002 Blue Spring near Bronson 

qspring_s101429027 Little Fanning Springs near Fanning Spring 

qspring_s101429001 Fanning Springs near Wilcox 

qspring_n011117008 Madison Blue Spring near Blue Springs 

qr_lsf_sprgrp Lower Santa Fe Springs Group 

qr_iche_sprgrp Ichetucknee Springs Group 

qr_wacissa_sprgrp Wacissa Springs Group 

qr_silver_sprgrp Silver Springs Group 

w3_lakebut UFA head near Lake Butler 

w3_hampton UFA head near Hampton Lake 

w3_sfelake UFA head near Santa Fe Lake 

w3_lkalto UFA head near Lake Alto 

w3_paleslk UFA head near Palestine Lake 

w3_oceanpo UFA head near Ocean Pond 

w3_cherryl UFA head near Cherry Lake 

w3_falmout UFA head near Falmouth 

w3_whitespr UFA head near White Springs 

qspring_s071634012 Devil's Ear Spring 

qspring_s081706005 Poe Spring 

qspring_s071727012 Treehouse Spring 

qspring_s071727010 Hornsby Spring 

qspring_s111326002 Manatee Springs 

qspring_s041121001 Lafayette Blue Spring 

qr_peacock_sprgrp Peacock and Bonnet Springs 

qspring_s051334002 Troy Spring 



Outcomes of Nonlinear Analysis  21 

 

Figure 4-8. Map of locations at which predictive uncertainty is evaluated. Points shown as orange hexagons 
are locations of simulated Upper Floridan aquifer groundwater levels. Points shown as green circles are 
springs. Black triangles represent the downstream limits of simulated river reaches. 
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For each prediction, uncertainty statistics (tables 4.2 and 4.3) were calculated for the prediction itself, 
and for the difference between the prediction value calculated for 2035 and that calculated for 2009 
(one of the years used in model calibration). For each of these two types of prediction, uncertainties 
can be displayed graphically as histograms, and as estimated cumulative probability distributions. 
Examples of these plots are provided in figures 4.9 through 4.19. The data on which these distributions 
are based were amassed by running the model 522 times – once for each of the calibration constrained 
parameter fields whose calculation was discussed in section 3 of this document. Similar plots can be 
made for any other prediction of interest. 

Table 4.2 Statistical summaries of 2035 predicted values. 

Prediction location 
identifier 

Prediction location description Prediction 
mean 

Standard 
deviation  

Coeff. of 
variation 

qr_2319394 Baseflow pickup in the reach upstream of the 
Withlacoochee River near Lee 

-432 6.0 0.01 

qr_2319500 Baseflow pickup in reach upstream of the 
Suwannee River near Ellaville 

-735 10 0.01 

qr_2320500a Baseflow to the reach upstream of the 
Suwannee River near Branford and downstream 
from Ellaville 

-912 8.4 0.01 

qr_2320700 Baseflow to the Santa Fe River near Graham -3.5 0.39 0.11 

qr_2321000 Baseflow to the New River near Lake Butler -19.4 0.79 0.04 

qr_2322700 Baseflow to the Ichetucknee River at US Highway 
27 near Hildreth 

-269 4.82 0.02 

qr_2323500 Baseflow pickup in reach upstream of the 
Suwannee River near Wilcox (downstream of 
Branford and Santa Fe River near Hildreth) 

-432 6.73 0.02 

qr_2324000 Baseflow to the Steinhatchee River near Cross 
City 

-54 2.29 0.04 

qr_2326000 Baseflow to the Econfina River near Perry -49 1.11 0.02 

qr_2326550 Baseflow pickup in the reach upstream of the 
Aucilla River near Nutall Rise (downstream of 
Wacissa River near Wacissa and the Aucilla River 
at Lamont) 

-967 61.48 0.06 

qr_iche_sprgrp Ichetucknee Springs Group -259 3.02 0.01 

qr_lsf_sprgrp Lower Santa Fe Springs Group -794 6.55 0.01 

qr_silver_sprgrp Silver Springs Group -466 7.88 0.02 

qr_wacissa_sprgrp Wacissa Springs Group -452 11.21 0.02 

qs_2315500 Baseflow to the Suwannee River near White 
Springs 

-212 21.25 0.10 

qs_2317620 Baseflow to the Alapaha River near Jennings -825 28.06 0.03 

qs_2319000 Baseflow to the Withlacoochee River near 
Pinetta 

-866 35.90 0.04 

qs_2319500 Baseflow to the Suwannee River at Ellaville -3070 52.84 0.02 

qs_2320500 Baseflow to the Suwannee River near Branford -3981 53.75 0.01 

qs_2321500 Baseflow to the Santa Fe River near Worthington 
Springs 

-47 1.37 0.03 

qs_2322500 Baseflow to the Santa Fe River near Fort White -707 6.56 0.01 

qs_2323500 Baseflow to the Suwannee River near Wilcox -5541 54.29 0.01 

qspring_n011117008 Madison Blue Spring near Blue Springs -102 0.77 0.01 
qspring_s101429001 Fanning Springs near Wilcox -66 0.77 0.01 

qspring_s101429027 Little Fanning Springs near Fanning Spring -1.8 0.04 0.02 

qspring_s121610002 Blue Spring near Bronson -2.7 0.82 0.30 
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w00202 UFA observation well near Lake Lochloosa 77.9 0.30 0.00 

w00258 UFA observation well near Lake Brooklyn 77.7 0.33 0.00 

w00400 UFA observation well near Lake Geneva 63.4 0.23 0.00 

w00878 UFA observation well near Putnam County MFL 
lakes 

26.4 0.13 0.00 

W3_CHERRYL UFA groundwater level near Cherry Lake 65.5 0.66 0.01 

W3_FALMOUT UFA groundwater level near Falmouth Spring 38.6 0.10 0.00 

W3_HAMPTON UFA groundwater level near Hampton Lake 65.4 0.55 0.01 

W3_LAKEBUT UFA groundwater level near Lake Butler 53.1 0.37 0.01 

W3_LKALTO UFA groundwater level near Lake Altho 70.4 0.39 0.01 

W3_OCEANPO UFA groundwater level near Ocean Pond 47.8 0.25 0.01 

W3_PALESLK UFA groundwater level near Palestine Lake 49.8 0.30 0.01 

W3_SFELAKE UFA groundwater level near Santa Fe Lake 77.8 0.41 0.01 

W3_WHITSPR UFA groundwater level near White Sulphur 
Springs 

50.6 0.22 0.00 

qr_2313700 Waccasassa River near Gulf Hammock -122.3 11.74 -0.10 

qr_peackock_sprgrp Peacock and Bonnet Springs -44.1 0.40 0.01 

qspring_s041121001 Lafayette Blue Spring -54.6 3.03 0.06 

qspring_s051334002 Troy Spring -92.7 5.36 0.06 

qspring_s071634012 Devils Ear Spring -112.4 1.65 0.01 

qspring_s071727010 Hornsby Spring -16.0 0.90 0.06 

qspring_s071727012 Treehouse Spring -2.5 0.38 0.15 

qspring_s081706005 Poe Spring -41.6 0.49 0.01 

qspring_s111326002 Manatee Springs -125.5 1.73 0.01 

 

Table 4.3 Statistical summaries of predicted changes from 2009 to 2035. 

Prediction location 
identifier 

Prediction location description Mean of 
predicted 
change  

Standard 
Deviation  

Coeff. of 
Variation  

qr_2319394 Baseflow pickup in the reach upstream of the 
Withlacoochee River near Lee  

16.0 1.27 0.08 

qr_2319500 Baseflow pickup in reach upstream of the 
Suwannee River near Ellaville  

42.4 2.65 0.06 

qr_2320500a Baseflow to the reach upstream of the 
Suwannee River near Branford and downstream 
from Ellaville 

17.8 0.37 0.02 

qr_2320700 Baseflow to the Santa Fe River near Graham  0.15 0.02 0.10 

qr_2321000 Baseflow to the New River near Lake Butler  0.26 0.02 0.09 

qr_2322700 Baseflow to the Ichetucknee River at US Highway 
27 near Hildreth  

7.54 0.26 0.03 

qr_2323500 Baseflow pickup in reach upstream of the 
Suwannee River near Wilcox (downstream of 
Branford and Santa Fe River near Hildreth) 

9.21 0.12 0.01 

qr_2324000 Baseflow to the Steinhatchee River near Cross 
City  

0.04 0.00 0.11 

qr_2326000 Baseflow to the Econfina River near Perry  0.32 0.05 0.14 
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qr_2326550 Baseflow pickup in the reach upstream of the 
Aucilla River near Nutall Rise (downstream of 
Wacissa River near Wacissa and the Aucilla River 
at Lamont) 

7.94 3.13 0.39 

qr_iche_sprgrp Ichetucknee Springs Group  7.42 0.25 0.03 

qr_lsf_sprgrp Lower Santa Fe Springs Group  16.6 0.73 0.04 

qr_silver_sprgrp Silver Springs Group  21.9 1.33 0.06 

qr_wacissa_sprgrp Wacissa Springs Group 2.49 2.89 1.16 

qs_2315500 Baseflow to the Suwannee River near White 
Springs  

0.55 0.13 0.23 

qs_2317620 Baseflow to the Alapaha River near Jennings  -0.34 0.15 0.44 

qs_2319000 Baseflow to the Withlacoochee River near 
Pinetta  

8.84 1.20 0.14 

qs_2319500 Baseflow to the Suwannee River at Ellaville  67.4 4.42 0.07 

qs_2320500 Baseflow to the Suwannee River near Branford  85.2 4.56 0.05 

qs_2321500 Baseflow to the Santa Fe River near Worthington 
Springs  

0.75 0.05 0.06 

qs_2322500 Baseflow to the Santa Fe River near Fort White  15.4 0.77 0.05 

qs_2323500 Baseflow to the Suwannee River near Wilcox  118.97 4.66 0.04 

qspring_n011117008 Madison Blue Spring near Blue Springs  2.43 0.19 0.08 

qspring_s101429001 Fanning Springs near Wilcox  0.88 0.03 0.04 

qspring_s101429027 Little Fanning Springs near Fanning Spring  0.02 0.00 0.04 

qspring_s121610002 Blue Spring near Bronson  0.91 0.23 0.25 

w00202 UFA observation well near Lake Lochloosa  -1.83 0.05 0.03 

w00258 UFA observation well near Lake Brooklyn  -1.88 0.06 0.03 

w00400 UFA observation well near Lake Geneva  -0.33 0.02 0.06 

w00878 UFA observation well near Putnam County MFL 
lakes  

1.96 0.04 0.02 

W3_CHERRYL UFA groundwater level near Cherry Lake  -0.41 0.05 0.11 

W3_FALMOUT UFA groundwater level near Faltmouth Spring -0.13 0.01 0.07 

W3_HAMPTON UFA groundwater level near Hampton Lake  -1.25 0.05 0.04 

W3_LAKEBUT UFA groundwater level near Lake Butler  -1.58 0.10 0.06 

W3_LKALTO UFA groundwater level near Lake Altho  -1.23 0.05 0.04 

W3_OCEANPO UFA groundwater level near Ocean Pond  -1.82 0.11 0.06 

W3_PALESLK UFA groundwater level near Palestine Lake  -1.69 0.09 0.05 

W3_SFELAKE UFA groundwater level near Santa Fe Lake  -1.60 0.06 0.03 

W3_WHITSPR UFA groundwater level near White Sulphur 
Springs 

-0.53 0.06 0.11 

qr_2313700 Waccasassa River near Gulf Hammock 1.83 0.37 0.20 

qr_peackock_sprgrp Peacock and Bonnet Springs 0.56 0.02 0.04 

qspring_s041121001 Lafayette Blue Spring 2.09 0.16 0.07 

qspring_s051334002 Troy Spring 1.42 0.09 0.06 

qspring_s071634012 Devils Ear Spring 1.25 0.08 0.06 

qspring_s071727010 Hornsby Spring 0.14 0.05 0.33 

qspring_s071727012 Treehouse Spring 0.15 0.02 0.14 

qspring_s081706005 Poe Spring 0.45 0.04 0.08 

qspring_s111326002 Manatee Springs 0.78 0.06 0.08 
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Figure 4-9. Histogram for the predicted Upper Floridan aquifer groundwater level near Lake Brooklyn for the 
2035 hypothetical withdrawal scenario. The histogram was developed from 522 randomly-generated 
predictions. 

 

Figure 4-10 Histogram for the predicted change in the Upper Floridan aquifer groundwater level near Lake 
Brooklyn from 2009 to the 2035 hypothetical withdrawal scenario. The histogram was developed from 522 
randomly-generated predictions. 
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Figure 4-11. Histogram for the predicted change in the Upper Floridan aquifer groundwater level near Lake 
Geneva from 2009 to the 2035 hypothetical withdrawal scenario. The histogram was developed from 522 
randomly-generated predictions. 

 

Figure 4-12. Histogram for the predicted change in the Upper Floridan aquifer groundwater level near Lake 
Lochloosa from 2009 to the 2035 hypothetical withdrawal scenario. The histogram was developed from 522 
randomly-generated predictions. 
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Figure 4-13. Histogram for the predicted change in flow in the Ichetucknee River near US Highway 27 near 
Hildreth from 2009 to the 2035 hypothetical withdrawal scenario. The histogram was developed from 522 
randomly-generated predictions. 

 

Figure 4-14. Histogram for the predicted change in flow in the Ichetucknee River near US Highway 27 near 
Hildreth from 2009 to the 2035 hypothetical withdrawal scenario. The histogram was developed from 522 
randomly-generated predictions. 
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Figure 4-15. Estimated cumulative probability distribution for the predicted Upper Floridan aquifer 
groundwater level near Lake Brooklyn for the 2035 hypothetical withdrawal scenario. The probability 
distribution was developed from 522 randomly-generated predictions. Also shown are the mean predicted 
value and the prediction based on the calibrated parameter field, along with values corresponding to the 
mean plus and minus one standard deviation. 

 

Figure 4-16. Estimated cumulative probability distribution for the predicted change in the Upper Floridan 
aquifer groundwater level near Lake Brooklyn from 2009 to the 2035 hypothetical withdrawal scenario. The 
probability distribution was developed from 522 randomly-generated predictions. Also shown are the mean 
predicted value and the prediction based on the calibrated parameter field, along with values corresponding 
to the mean plus and minus one standard deviation. 
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Figure 4-17. Estimated cumulative probability distribution for the predicted change in the Upper Floridan 
aquifer groundwater level near Lake Geneva from 2009 to the 2035 hypothetical withdrawal scenario. The 
probability distribution was developed from 522 randomly-generated predictions. Also shown are the mean 
predicted value and the prediction based on the calibrated parameter field, along with values corresponding 
to the mean plus and minus one standard deviation. 

 

Figure 4-18. Estimated cumulative probability distribution for the predicted change in the flow of the 
Ichetucknee River at US Highway 27 near Hildreth from 2009 to the 2035 hypothetical withdrawal scenario. 
The probability distribution was developed from 522 randomly-generated predictions. Also shown are the 
mean predicted value and the prediction based on the calibrated parameter field, along with values 
corresponding to the mean plus and minus one standard deviation. 
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Figure 4-19. Estimated cumulative probability distribution for the predicted change in the flow of the Santa 
Fe River near Fort White from 2009 to the 2035 hypothetical withdrawal scenario. The probability distribution 
was developed from 522 randomly-generated predictions. Also shown are the mean predicted value and the 
prediction based on the calibrated parameter field, along with values corresponding to the mean plus and 
minus one standard deviation. 

Intuitively, uncertainties associated with temporal predictive differences are likely to be much smaller 
than those associated with the individual predictions. This is an outcome of the high degree of 
temporal correlation that is likely to exist between predictions made at the same location but at 
different times under system stress regimes that are not too different. To see why this is so, let the 
uncertainty variance of a prediction made at time t1 be specified as σ2

1 and the uncertainty variance 
of a prediction made at the same location but at time t2 be specified as σ2

2. Let us designate the 
covariance between these predictions as σ2

12. Using standard relationships for propagation of 
variance, the variance of uncertainty of the difference between these predictions is calculated as: 

 σ2
1-2 =  σ2

1 + σ2
2 - 2σ12        (4.2) 

If the two predictions have about the same uncertainty and experience a correlation coefficient close 
to 1, it can be easily shown that σ2

1-2 approaches zero. 

While equation 4.2 can partially explain the small uncertainties associated with predictive differences 
displayed in the above figures, intuition also suggests that the smallness of these uncertainties may 
nevertheless overstate the accuracy of model-predicted differences in system state arising from 
differences in system stress. It is suggested that this is probably the case, for the uncertainties 
computed in the manner discussed in section 3 of this document do not account for model errors. 
These arise from numerous sources that afflict both the calibration and predictive processes. To the 
extent that errors can be endowed with a stochastic description, their temporal correlation is likely to 
be high. Hence equation 4.2 applies to them as well. This, it is hoped, will indeed raise the integrity of 
predictive differences to a higher level than that of predictive absolutes. However, quantification of 
the effect of model errors (also referred to herein as “structural noise”) is not possible without 
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recourse to a model from which these errors are absent. Obviously, no such model is available. This 
matter is further discussed in section 6.  
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5. Outcomes of Linear Analysis 

5.1 Statistics used in Calculations 
As for nonlinear analysis, linear analysis requires a C(k) matrix and a C(ε) matrix. These are used in 
equations 2.3a and 2.3b to calculate Cʹ(k). They are also used by the PEST SUPCALC utility in estimating 
the dimensionality of the calibration solution space. 

The C(k) matrix used for linear analysis is slightly different from that which was employed for nonlinear 
analysis, in that many parameters are considered to have slightly greater prior uncertainties. These 
are the same uncertainties as those employed in previous linear analysis conducted on the NFSEG 
model. (The reasons for use of diminished prior uncertainties in nonlinear analysis were explained in 
section 3.) However, variograms and correlations used in linear and nonlinear analysis were the same 
for all parameters. Prior parameter variances used in linear analysis are tabulated by group in table 
5.1; this is the counterpart to table 3.3 provided in the previous section. 

Parameter group name Standard deviation ascribed to each parameter within group 
vanis1 0.25 
vanis2 0.25 
vanis4 0.25 
vanis5 0.25 
vanis6 0.25 
vanis7 0.25 
Lcm 1.0 
Rcm 0.6 
Sc 1.0 
Lkzmul 0.6 

Table 5.1 Standard deviations assigned independently to each parameter within each respective parameter 
group for use in linear analysis. Note that these are actually applied to the log (to base 10) of each parameter. 
Note also that none of the parameters appearing in the above table are represented by pilot points in the 
NFSEG model. 

C(ε) is, once again, assumed to be diagonal. For each observation group the PEST PWTADJ2 utility was 
used to apply a factor to measurement weights used in the calibration process such that the objective 
function achieved for each observation group is equal to the number of non-zero weighted 
observations comprising the group. The diagonal elements of C(ε) were estimated as the inverse 
squared reciprocal of thus-calculated weights. 

5.2 Results 
Maps of identifiability and relative uncertainty variance reduction for selected parameter fields are 
shown in figures 5-1 through 5.7. These maps are broadly similar for each parameter type. However, 
identifiabilities tend to be more “polarised” than relative uncertainty variance reduction, with 
parameters tending to adopt values that are either close to one or close to zero. This is an outcome 
of the somewhat artificial nature of this parameter, and its dependence on the number of dimensions 
that are assigned to the calibration solution space. It also reflects the “in or out” nature of each vector 
comprising the columns of the V1 matrix of equation 2.5 as the dimensionality of the solution space is 
varied. 
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Figure 5-1. Relative parameter uncertainty variance reduction of layer 3 horizontal hydraulic conductivity pilot 
points. Locations of layer 3, non-zero weighted, groundwater-level observations in 2001 and/or 2009 are 
superimposed on this map. 
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Figure 5-2. Relative parameter uncertainty variance reduction of layer 3 horizontal hydraulic conductivity pilot 
points. Locations of non-zero weighted spring flow observations in 2001 and/or 2009 are superimposed on 
this map. 
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Figure 5-3. Relative parameter uncertainty variance reduction of layer 2 vertical hydraulic conductivity pilot 
points. Locations of non-zero weighted, layer 1 (red points) and layer 3 (blue points) observations in 2001 
and/or 2009 are superimposed on this map. 
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Figure 5-4. Identifiability of layer 3 horizontal-hydraulic conductivity pilot points. Locations of layer 3, non-
zero weighted, groundwater-level observations in 2001 and/or 2009 are superimposed on this map. 
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Figure 5-5. Identifiability of layer 3 horizontal-hydraulic conductivity pilot points. Locations of non-zero 
weighted spring flow observations in 2001 and/or 2009 are superimposed on this map. 
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Figure 5-6. Identifiability of layer 2 vertical-hydraulic conductivity pilot points. Locations of non-zero weighted 
vertical head difference observations across layer 2 in 2001 and/or 2009 are superimposed on this map. 
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Figure 5-7. Identifiability of layer 2 vertical-hydraulic conductivity pilot points. Locations of non-zero 
weighted, 2001 or 2009 groundwater-level observations in layer 1 (red points) and/or and layer 3 (blue points) 
are superimposed on this map. 

For pilot point parameters, the spatially diffuse nature of relative parameter uncertainty variance 
reduction compared to corresponding identifiabilities also arises from the fact that prior parameter 
uncertainties are reflected in posterior parameter uncertainties. Use of a variogram to characterize 
prior uncertainties results in posterior spatial correlation of these parameters. Hence if a parameter 
is informed by a local head, spring or baseflow measurement, that information is then passed to 
neighbouring (spatially correlated) parameters. This two-step passage of information is not reflected 
in identifiabilities; the latter statistic describes only the first of these two steps. 

Notwithstanding differences in detail, the broad scale patterns exhibited by maps of identifiability and 
relative parameter uncertainty variance reduction can be explained in large part by variations in 
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spatial density of observations comprising the calibration dataset, and the sensitivities of model-
calculated counterparts to these observations to pertinent model parameters. Taking k2z parameters 
as an example (i.e. vertical hydraulic conductivities in layer 2), the highest values for both identifiability 
and relative parameter uncertainty variance reduction occur in areas where the Upper Floridan 
aquifer is confined by the intermediate confining unit, and where high densities of observations of 
both groundwater level and vertical groundwater-level differences are available. Conversely, both of 
these statistics have lower values where groundwater level observations are sparse, and in unconfined 
areas where flow is primarily horizontal and (accordingly) where hydraulic property heterogeneity is 
reflected in the values assigned to horizontal hydraulic conductivity. Similarly, identifiabilities and 
relative uncertainty variance reductions are highest for k3x parameters (i.e. horizontal hydraulic 
conductivities in layer 3) in confined areas, and in unconfined areas where the spatial density of 
groundwater level observations is highest.   
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6. Discussion and Conclusions 
The suite of calibration-constrained, random parameter fields that was calculated using the 
methodology described in chapter 2 of this appendix can be used to place a lower bound on 
uncertainties associated with predictions of management interest made by the NFSEG model.  

As has been discussed, many predictions required by the NFSEG model are similar in nature to 
members of the dataset against which the NFSEG model was calibrated. Hence, they are solution 
space dominated. This has two effects which work in opposite directions and are difficult to quantify. 

For a prediction that is solution space dominated, model structural defects can be “calibrated out” to 
some extent. As Welter and Doherty (2010) and White et al (2014) explain, where a model is defective 
(as all models are), the link between parameter uncertainty and predictive uncertainty is broken to 
some extent, as parameters can adopt surrogate roles to compensate for model defects without any 
deleterious effects being felt by solution space dependent predictions. Moreover, the structural 
deficiencies which give rise to this type of parameter behaviour are rendered invisible through the 
very act of parameters adopting these compensatory roles (unless adoption of those roles yields 
parameter values that are obviously erroneous). For these types of prediction, it is the visible 
expression of model structural defects that present the most serious imposition to characterization of 
their uncertainties. As was discussed herein, these visible expressions of model structural defects 
cannot be subjected to stochastic characterization as they are location-, time- and process-specific. 
Furthermore, their expression during predictive model deployment is likely to be different from their 
expression during model calibration. 

The situation is different for model predictions that possess a high degree of null space dependence. 
These predictions pertain to locations that are different from those at which measurements 
comprising the calibration dataset were made, and/or pertain to a very different regional or local 
stress regime from that which prevailed during model calibration. For these types of predictions, 
nonuniqueness of parameter combinations that comprise the calibration null space dominates 
predictive uncertainty. The methodology described in chapter 2 of this appendix is able to characterize 
this component of predictive uncertainty reasonably well.  

It must not be forgotten, however, that separation of solution and null spaces is somewhat artificial 
when the upscaled nature of parameters employed by a regional model is taken into account. Local 
process and hydraulic property details can be represented only in an approximate fashion by such a 
model. For example, where springs occur within the domain of the NFSEG model, a small number of 
parameters is used to represent a possibly high level of local heterogeneity which governs flow from 
the spring. In many cases, these upscaled parameters can be adjusted to provide a good fit with 
historical spring flow. Where this occurs, the roles that these upscaled parameters play in the future 
are likely to reflect their roles in the past; hence predictions of future spring flow can be made with 
relative certainty. However, if upscaled parameters cannot be adjusted in order to allow the model to 
reproduce measurements of historical spring flow, this may indicate a deficit of representation or 
salient local parameterization and/or structural details in the model. With the addition of more 
parameters, a better fit may indeed be achieved with the calibration dataset. At the same time the 
dimensionality of the null space is likely to be increased. Both of these may lead to better predictions 
of spring flows at the same location, and to a more reliable characterisation of its uncertainty, even if 
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some of the added parameters adopt surrogate roles to fit historical spring flow. If this is the case, it 
suggests that more parameters may need to be added to the NFSEG model on an as-needed basis in 
accordance with specific predictions that are required of it. (Note that the same considerations apply 
to baseflows and heads as those that apply to springs.) 

These considerations should not impugn the performance of the NFSEG model in achieving its 
ambitious aims. Though course-gridded in relation to some of the features which may impact local 
groundwater behaviour, its grid is no coarser than that employed by other District models. At the 
same time, there can be little doubt that its regional nature has promulgated a reduction in sources 
of uncertainty that emerge from use of boundary conditions that are not actually groundwater flow 
boundaries. Numerical models of groundwater flow are always be imperfect, and are always 
compromised. 
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