LIST OF FIGURES

Figure 7-1. Sensitivity of simulated groundwater levels to changes in aquifer parameters and boundary conditions ..2

Figure 7-2. Sensitivity of simulated baseflows to change in aquifer parameters and boundary conditions ..3

Figure 7-3. Sensitivity of simulated spring flows to changes in aquifer parameters and boundary conditions ..4

Figure 7-4. Sensitivity of simulated groundwater levels to changes in lateral boundary heads ..5

Figure 7-5. Sensitivity of simulated baseflows to changes in lateral boundary heads6

Figure 7-6. Sensitivity of simulated spring flows to changes in lateral boundary heads .7

Figure 7-7. Composite-scaled sensitivities for all observations ..8

Figure 7-8. Composite-scaled sensitivities for groundwater-level observations9

Figure 7-9. Composite-scaled sensitivities for baseflow observations10

Figure 7-10. Composite-scaled sensitivities for spring-flow observations11

Figure 7-11. Coefficient of Variations for all parameter groups12

Figure 7-12. Location evaluated in the prediction uncertainty analysis13

Figure 7-13. Histogram for the predicted change in flow in the Upper Floridan aquifer groundwater level near Lake Brooklyn from 2009 to the 2035 hypothetical withdrawal scenario based on 522 sets of parameters14

Figure 7-14. Histogram for the predicted flow reduction in the Santa Fe River near Forth White from 2009 to the 2035 hypothetical withdrawal scenario based on 522 sets of parameters ... 14
Figure 7-1 Sensitivity of simulated groundwater levels to changes in aquifer parameters and boundary conditions
Figure 7-2 Sensitivity of simulated baseflows to change in aquifer parameters and boundary conditions
Figure 7-3 Sensitivity of simulated spring flows to changes in aquifer parameters and boundary conditions
Figure 7-4 Sensitivity of simulated groundwater levels to changes in lateral boundary heads
Figure 7-5 Sensitivity of simulated baseflows to changes in lateral boundary heads
Figure 7-6 Sensitivity of simulated spring flows to changes in lateral boundary heads
Figure 7-7 Composite-scaled sensitivities for all observations
Figure 7-8 Composite-scaled sensitivities for groundwater-level observations
Figure 7-9 Composite-scaled sensitivities for baseflow observations
Figure 7-10 Composite-scaled sensitivities for spring-flow observations
Figure 7-11. Coefficient of Variations for all parameter groups
Figure 7-12. Location evaluated in the prediction uncertainty analysis. Points shown as orange are locations of simulated Upper Floridan aquifer groundwater levels. Points shown as green are springs. Black triangles represent the downstream limits of simulated river reaches.
Figure 7-13. Histogram for the predicted change in flow in the Upper Floridan aquifer groundwater level near Lake Brooklyn from 2009 to the 2035 hypothetical withdrawal scenario based on 522 sets of parameters.

Figure 7-14. Histogram for the predicted flow reduction in the Santa Fe River near Forth White from 2009 to the 2035 hypothetical withdrawal scenario based on 522 sets of parameters.